數字化寬帶測向系統中的相位差測量及誤差分析_泰克代理商
在電子對抗領域中輻射源測向是一個基本問題。能發射電離輻射的物質或裝置。從廣義上講,凡能釋放各種電離輻射的物質或裝置(如宇宙射線)均可視為輻射源。但習慣上用于γ探傷、放射治療和輻射加工等的放射性深度較高的放射源稱為輻射源。干涉儀測向體制的主要優點是精度高和工作頻率范圍寬,但目前使用的干涉儀系統還存在不足,
主要包括:(1)在被動制導等領域中測向精度仍然不夠:(2)對現代雷達使用的寬帶脈壓信號適應能力有限;(3)有待進一步提高系統的工作頻率范圍。
在電子對抗領域中輻射源測向是一個基本問題。而干涉儀測向系統是目前精度相對較高的一種測向體制因而被廣泛使用。干涉儀測向體制的主要優點是精度高和工作頻率范圍寬,但目前使用的干涉儀系統還存在不足,主要包括:(1)在被動制導等領域中測向精度仍然不夠:(2)對現代雷達使用的寬帶脈壓信號適應能力有限;(3)有待進一步提高系統的工作頻率范圍。針對上述問題,本系列論文提出了數字化寬帶測向系統的整體解決方案,重點討論數字化相位差測量及誤差分析、概率解模糊算法和在測向精度和工作頻率范圍約束下如何進行天線陣列基線設計三個問題。
本文是系列論文的第一篇,給出了數字化寬帶測向系統模型,討論了數字化相位差測量方法,推導了數字化相位測量的數字化方法誤差函數和由通道噪聲引起的信號相位誤差分布密度函數。相位差測量的精度直接影響系統測向的精度,還會影響解相位差模糊和天線陣列基線設置等一系列系統設計問題。傳統的相位差測量方法都是利用窄帶信號干涉原理把相位差轉化為幅度進行測量的,因而其只能夠適用于窄帶信號的相位差測量,且測量精度受幅度測量誤差的影響較大。隨著數字技術的發展,數字相位差測量技術被廣泛討論,但其都沒有論述數字化方法對相位差測量的影響和噪聲情況下相位測量的誤差分布。本文提出的數字化相位差測量方法,其基本思想是把信號轉換到頻率域,利用信號的相位譜直接完成在給定頻率點上相位差的測量,且全面的分析了相位差測量誤差。
數字化寬帶測向系統模型
非均勻線陣的天線數為m,天線的間距分別為d1,d2,L dm-1寬帶入射信號分別為s(t),入射方向與陣列法線的交角分別為θ。